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ABSTRACT 

With the use of two stable, highly ionized argon plasma sources, over 200 spectral 
lines have been measured and identified. Of these, 70 or more have been used for 
transition probabilities after they were found to be single, unperturbed argon ion (Aril) 
lines. Each line has been tested for abnormal half-widths; those with widths greater than 
20 percent over normal are not used. Excitation temperatures from 1 to 8 ev (kTe) have 
been used: (1) photographically with a 1.5-meter focal length spectrograph and 
(2) photoelectrically with a 0.5-meter spectrometer. As many as 33 observations have 
been tabulated for the stronger lines. All lines have upper state energy values between 19 
and 24.5 ev and lie between 3500 and 5100 A. The absolute intensity of the 4589 A 
Aril line produced a density which agreed well with calculated local thermodynamic 
equilibrium conditions at P = 340 jxHg and kTe = 1 ev. All runs used at least four lines, 
with known transition probabilities, and as many as 12 in determining temperatures from 
which unknown transition probabilities were calculated. The tables and figures include 
wavelengths, energy states, estimated uncertainty, statistical weights, transition 
probabilities, and number of observations. Examples of the Maxwell-Boltzmann 
distributions are shown. 

m 
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SECTION I 
INTRODUCTION 

During the past ten years there has been increased interest in noble gas spectra in 
the aerospace industry. Average values of plasma properties, such as temperatures, 
density, and heat transfer, are no longer adequate for the updated design and testing of 
space vehicles. Therefore, the ability to determine precisely the flow characteristics of 
high-temperature gases has become increasingly important. 

Because of its availability, ease of ionization, and relatively low cost, argon (Ar) 
gas is a natural choice for thermodynamic research of gas properties at high temperatures 
(Refs. 1 through 14). Argon has been used extensively in the studies of 
magnetohydrodynamic (MHD) flows, chemical synthesis, wind tunnel plasmas, and 
simulated supersonic flight. The intensities of the argon neutral (Arl) or ionized Aril 
spectral lines can be used to calculate flow temperatures and particle densities when 
correlated with their respective transition probabilities. 

The purpose of this investigation was to improve the accuracy of measuring 
excitation temperatures by spectroscopic methods through more consistent transition 
probabilities of singly ionized argon (Aril) spectral lines. 

Table I gives the relative (with an attempt to bring them close to absolute) 
transition probabilities of Aril lines spread over 5 ev in upper state energy (E„). These 
results should increase the precision over those previously available. The added number of 
spectral lines should give greater freedom in matching line intensities. Also, when 
impurities overlap otherwise useful lines, other choices can be made. This in turn provides 
more accurate radiative heat transfer data as well as better estimates of electrical and 
thermal conductivity. 

Heretofore, several authors have measured or calculated transition probabilities for 
the strongest of the Aril lines under moderate temperatures and pressures with 
disagreements as high as a factor of 100. Choosing 12 single lines of nearly equal 
intensities and comparing the Maxwell-Boltzmann temperature plots from previously 
available transition probabilities measured by several authors (Refs. 6, 10, 11, 12, and 13) 
clearly suggest that the 1963 measurements by Olsen (Ref. 6) are the best to use for a 
linear, consistent set. 

Because of the problems encountered in calculating the exact coupling parameters 
for argon, as shown by the spread in the Aug values in Fig. 1 for Garstang, and to gain a 
greater confidence in the base values, it was advisable to measure the absolute value of at 
least one Aril line. This was done for the 4589 Ä line using the temperature determined 
from Olsen's other transition probabilities and a carefully calibrated system. The 4589 Ä 
line was chosen because its singularly high Eu bares extra weight in projecting the 
Boltzmann plot to unknown gA at higher Eu (Fig. 1). 
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TABLE I 
Aril TRANSITION PROBABILITIES 

M cm ■1 E„. 6V 
"ul.       ±4A/A, I      . *u«u*. Number 

KH sec"1  percent* Mu .lO^set"1 .Determinations 

3545.58 
3588.44 
3729 29 
3928 62 
4052 94 
4114.52 
4116.39 
4131.73 
4156.11 
4178.39 
4179.31 
4199.93 
«01.58 
4218.69 
4222.67 
4228.16 
4237.23 
4255.62 
4275.19 
4277.55 
4282.90 
4331.25 
4332.06 
4348.11 
4352.23 
4358.53 
4362.07 
4367.87 
4370.76 
4371.36 
4372.09 
4374.87 
4375.96 
4383.79 
4385.08 
4400 09 
440L02 
442a 90 
4426.01 
4430.18 
4431.02 
4433.83 
4438.12 
4439.45 
446a 56 
4474.77 
4481.83 
4498.55 
4502.95 
453a 57 
4535.51 
4537.67 
4543.91 
4545.08 
4547.78 
4564.43 
4579.39 
4589.93 
4598.77 
4609.60 
4637.25 
4657.94 
4726.91 
473a 69 
4732.08 
4735.93 
4764.89 
4806.07 
4847.90 
4865.96 
«879.90 
4888.29 
4889.06 
4904.75 
4933.24 
4965.12 
4972.16 
5009.35 
5062.07 

18.06573 xio'ev) 
18758962 
1B5093.92 
161049.65 
161049.65 
191975.16 
196633.93 
196622.78 
172817.14 
182223.06 
158168.71 
181595.04 
196633.93 
182223.06 
18309183 
183915.58 
158731.20 
172214.74 
182223.06 
183091.83 
172214.74 
158429.05 
158168.71 
155709.02 
157234.93 
155709.02 
183986.83 
173394.33 
190196.80 
173348.78 
15535104 
183915.58 
183091.83 
161090.31 
161049.65 
190106.84 
155352.04 
155044.07 
155352.04 
157674.30 
158168.71 
155044.07 
194950 00 
194950 00 
195867.73 
15504407 
172817.14 
173394.33 
196633.83 
181595.04 
172214.74 
183091.83 
194950.00 
183091.83 
16024035 
182223.06 
182952.14 
16109031 
170401.88 
17221474 
170531.29 
170401.88 
159707.46 
159394.32 
182223.06 
172214.74 
155352.04 
16024035 
155044.07 
155709.02 
181595.04 
153731.20 
19495000 
159707.46 
170531.29 
155352.04 
159394.32 
155709.02 
155044.07 
155352.04 

23 26 
22.95 
19.97 
19.97 
23.80 
24.38 
24.38 
21.43 
22.59 
19.61 
22.51 
24.38 
22.59 
22.70 
22.81 
19.68 
21.35 
22.59 
22.70 
21.35 
19.64 
19.61 
19.30 
19.49 
19.30 
22.81 
21.50 
23.58 
21.49 
19.26 
22.80 
22.70 
19.97 
19.97 
23.57 
19.26 
19.22 
19.26 
19.55 
19.61 
19.22 
24.17 
24.17 
24.28 
19.22 
21.43 
21.50 
24.38 
22.51 
21.35 
22.70 
24.17 
22.70 
19.87 
22.59 
22.68 
19.97 
21 13 
21.35 
21.14 
2L13 
19.80 
19.76 
22.59 
21.35 
19.26 
19.87 
19 22 
19.30 
22.51 
19.68 
24.17 
19.80 
21.14 
19.26 
19.76 
19.30 
19.22 
19.26 

6.84 
5.50 
2.56 
1.83 

43.50 
5.97 

16.03 
9.13 

15.85 
0.11 
9.87 

10.88 
1.24 

11.82 
10 66 

1.83 
2.48 
1.56 
7.72 
9.58 
1.49 
5.50 
1.44 

13.52 
2.01 
1.99 
2.31 

65.66 
12.55 
2.48 
9.91 
4 61 
1.89 
025 

50 00 
L92 
3.17 
0 37 
6.70 
5.33 
1.37 

89.16 
4.53 

27.20 
a 17 
5.18 

13.34 
29.33 
8.89 
037 
157 

19.88 
1.12 
4.09 
3.71 

21.16 
6.97 
9.92 
1.32 

12.32 
1.35 
6.77 
7.23 
081 
1.52 
630 
4.86 
8.54 
8.33 

16.06 
10 21 
3.76 
1.21 
a so 
1.60 
447 
084 
1.69 
106 

20 
10 

12 
12 

6 
9 
8 

10 
10 

7 
9 
8 
7 
6 

10 
20 
20 
10 
25 

9 
7 

10 
15 
10 
10 
10 
12 
15 
12 
40 

15 
11 
9 

30 
20 
25 

10 
15 
10 
3 
3 

20 
20 
11 
4 

12 
20 
20 
14 
10 
5 

11 
20 
15 
15 
12 
20 
4 

15 
15 
3 

11 

6 
10 
4 
4 
4 
6 
4 
2 
4 
4 
6 
6 
4 
4 
2 
6 
4 
4 
4 
4 
2 
4 
2 
8 
2 
4 
6 
2 
4 
4 
2 
4 
2 
4 
4 
4 
6 
4 
6 
4 
6 
8 
i 

■ 4 

6 
2 
6 
6 
6 
4 
4 
6 
4 
4 
4 
2 
2 
6 
4 
8 
6 
2 
4 
4 
4 
4 
4 
6 
2 
6 
5 
6 
2 
3 
4 
4 
2 
6 
4 

41.04 
55.00 
10 24 
7.32 

174.00 
35.82 
64.12 
18.26 
63.40 
0.44 

59.22 
65.28 
4.96 

47.28 
21.32 
1198 
9.92 
6.24 

3a 88 
38.32 
2.98 

22.00 
2.88 

108.16 
4.02 
7.96 

13.86 
131.32 
50 20 
9.92 

19.82 
18.44 
3.78 
1.00 

200.00 
7.68 

19.02 
1.48 

40.20 
21.32 
8.22 

713.28 
28.98 
108.80 

1.02 
1036 
sä oo 

176.00 
53.34 

1.48 
10.28 

119.28 
4.48 

16.36 
14.84 
42.32 
13.94 
59.52 
5.28 

98.56 
3.10 

13.54 
28.92 
3.24 
6.08 

25.20 
19.44 
51.24 
16.66 
96.36 
61.26 
22.56 
2.42 
6.40 
6.40 

17.88 
1.68 

iaw 
8.24 

24 

10 

24 

'AA/A percent ■ estimated uncertainty calculated by dividing the mean deviation by the mean value 
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Fig. 1   Comparison of Boltzmann Temperature Plots 

5.60 

ev 

TABLE II 
PRESENT Aril TRANSITION PROBABILITIES 

COMPARED WITH OTHER DATA 

x.A 

Au/ x IO-7 sec-1 

Tidwell 
Stab™ 
"Exact" 

Calculated 

Olsen* 
Exp 

Popenoe'101 

Exp. Matilsky*151 
Garstang"21 

Intermediate 
Coupling 

Griem«« 
Coulomb 

3729.29 2.56 870 6.26«« 11.9 628 
3928.62 1.83 4.51 4.74^ 1.74 

4348.11 13.52 13.90 11 so*7' 24.00 9.4 12.80 

4426.01 6.70 11.501!" 8.71 

4430.18 5 33 6.78 8.57«» 6.21 

4579.39" 6.97 6.42 7.44t7) 0.10 3.91 
4589.93 9.92*" 6.40'7> 83.0 iaw 983 
4609.60 12.32 9.06|7> 83.0 10.70 10.45 

4637.25 1.35 a 64W a 81 0.68 

4657 94 6.77 7.55 6.951'» an 
4764.89 486 7 15 5.40l7> 26.0 7.00 1.73 

4806.07 8.54 1165 7.861" 13.10 7.88 646 
4847.90 8.33 897 9.55*7> 8.10 7.55 

4879.90 10.21 896 6.59M 7.71 

4933 24 1.60 1.61 1.60('» 2 41 1.15 

5009.35 169 1.37 1.70171 1.39 2.46 

5062.07 2.06 2.08 220(7) 2.81 3.59 

'Olsen'4! 1959' 
Olsenbl 1962 
Olsen16* 1963 

"Underlined wavelengths indicate six lines used to set absolute value 

'"Calculated value. 
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The Olsen transition probabilities of the six lines underlined in Table II gave a 
very smooth straight line with the present measured intensities. Using these six lines and 
the new calculated value for 4589 Ä, which agrees with Garstang (Ref. 11) and Griem 
(Ref. 13), it was felt that an adequate base has been chosen for the rest of the 70 Aril 
lines listed in Table I. 

SECTION II 
EXPERIMENTAL PROCEDURE 

2.1   APPARATUS 

Two steady-state, highly ionized Ar plasma sources have been used to produce the 
Aril spectra. 

2.1.1 Low Pressure, Magnetically Confined Ar Plasma; Hollow Cathode 

The system is shown in Fig. 2, and a detached drawing of the anode-cathode 
region is given in Fig. 3. This is a hollow tantalum cathode discharge using Ar as the 
ionizing medium (Ref. I). The vacuum chamber is 30 cm long and 20 cm in diameter 
made of stainless steel. The pumping system comprises a Freon® baffled 6-in. oil 
diffusion pump with a net speed of 400 liters/sec. This is backed by a Freon baffled 
50-ft3/min roughing and finishing pump. The baffles minimized the oil backstreaming into 
the discharge chamber and helped establish the 10"7 ton base pressure. Tall lines were 
emitted during the first 20 seconds of each run due to cathode sputtering; consequently, 
temperature runs were made only after this stabilization period was complete. 

Magnet Pole Face 

Cathode 

1.5-in. 
Valves 

Anode 
Plexiglass 
Instrumentation 
Flange- 

Mechanical 
Pump 

6-in. Oil 
Diffusion 
Pump 

Fig. 2   Magnetically Confined Argon Plasma Source 

4 
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Magnet Pole Face 

Slip-Fit 
Feedth rough 
with O-Ring 
Seal 

Discharge Chamber —^ 

.^Feedthrough with 
f I   Copper Seal 

Flare Fitting 

Gas Inlet 

Magnet 
Pole Face 

Anode 

UH20 Inlet and 
Outlet for Cooling 

Fig. 3   Anode-Cathode Detail 

The Ar supplying the discharge was bled from a high pressure, bone-dry Ar bottle 
through the hollow cathode. At a pressure of from 300 to 400 /^Hg the discharge became 
thermionically emitting under the influence of the longitudinal magnetic field. The 
pressure then was reduced to the 10"4 torr operating range. 

2.1.2   High Enthalpy, MHD Ar Arc Accelerator 

The second system used as a plasma source of Aril is shown in Fig. 4. This 4- x 
4- x 8-ft vacuum chamber houses a magnetohydrodynamic (MHD) arc accelerator which 
utilizes its self-induced magnetic field to accelerate a plasma. A 1600-cfm booster 
pump system was capable of maintaining a base pressure of 1 to 10 ßüg and 
typical run pressures of 300 M f°r an Ar mass flow rate of 0.15 gm/sec. Three 32-in. 
diffusion pumps were capable of maintaining a 5-u pressure with the same Ar mass flow 
rate of 0.15 gm/sec. 

Fig. 4   High Enthalpy MHD Arc Chamber 
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Fig. 5  Arc at 600 amp and 34.5 v 

Steady-state arc power capabilities are more than 400 kw provided by eight 
commercial welding units. The highest current used during the temperature investigation 
was 1400 amp at 75 v or nearly one-fourth the maximum capability. The arc operating 
under moderate conditions is shown in Fig. 5. 

2.1.3   Spectroscopic 

a. A 1.5-meter focal length Jarrell-Ash spectrograph (Fig. 4). 

b. A 0.5-meter focal length Jarrell-Ash Ebert spectrometer and table 
mount with x-y-z manual control. 

c. A Jarrell-Ash recording microdensitometer. 

d. Optics; i.e., lens, beam splitters, mirrors, photo multipliers, glass filters, 
camera, and standard tungsten-strip lamp. 

e. An alignment laser and power meter. 

The spectrograph and spectrometer systems were designed to give maximum 
response at 4000 Ä with reasonably flat response up to 5000 Ä. The gratings had 30,000 
lines/in. and were normally used in the first order except in the case where it was used to 
identify the strongly overlapped region of 3500-3600 Ä at higher resolution using higher 
orders. In the second source (MHD) the 3545 and 3588-Ä Aril lines were occasionally 
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overlapped and seldom could be used. However, in the first source (hollow, cathode) these 
lines were well separated from nearby lines and were used to a distinct advantage since 
these two lines had the highest upper state energy values for which the transition 
probabilities (Ref. 2) were known at that time. 

2.2 CALIBRATION 

Photomultiplier calibration was established by direct comparison with a 
tungsten-strip lamp at the wavelengths of the Aril lines in question. This secondary 
standard lamp was calibrated by comparison with an NBS standard lamp. Three-standard 
lamp calibration curves are shown in Fig. 6. 

0.1      0.2      0.3      0.4      C.5      3.6      0.7      C.8      0.9     1.0 

E, J w.'5t-nm-mir2 

1.0 3.0     JO     7 0     9.0     11.0    13.0    15.0    17.0    19.0 

E. |. wist-nr—imz 

Fig. 6 
E, iim'st-nm-mn2 

Calibration of Secondary Standard Lamp, 6v 
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The photographic plates were then calibrated at three to four lamp currents using 
the optical setup in which the Aril spectra were to be taken. Figure 7 shows the Ar 
spectrum with three calibration continua produced in this way. The plates must go 
through an additional calibration because of the logarithmic sensitivity of the emulsions. 
This is called the "three point" H&D curve calibration, modified by the Seidel function 
which extends the linear portion of the typical "S" curve to linearize a greater range of 
transmittance values. The Seidel formula is 

A =  l 4-fH (i) 

oo    5o   -~i g V-TI      000--J 
—i        vO^O 

•C*-C 

Aril X, Ä 

Fig. 7 Spectral Plate with Calibration (Continuum) and Aril Lines 
at Various Axial Positions 

where T is the transmittance. From the three calibration points (continuum portions of 
Fig. 7) at each wavelength the A or Seidel function is plotted against E in Fig. 8. It 
should be noted that two consecutive plates taken from the same carton may have 
different calibration slopes. This indicates that each plate should be calibrated instead of 
depending on a single calibration for all emulsions of the same sensitivity class and batch 
number. 

2.3  METHOD 

The intensity, I, of the light emitted from a homogeneous, optically thin gas at 
wavelength Xu£, produced by a transition between an upper energy level, Eu, and a lower 
level, Eg, is given by 

I  = C Au£ Nu/Au£ (2) 
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E 
E 
i 
E 
c 

-1.5    -1.0     -0.5        0        0.5       1.0       1.5      2.0 

Seidel Function 

Fig. 8 Seidel Function versus Energy for Plate Calibration 

where C is a experimentally determined constant, Auj is the Einstein emission coefficient 
or the number of transitions per second from state u to Z, and Nu is the population of 
state u. 

The temperature enters the formula through its role of populating the upper level 
depicted by the Maxwell-Boltzmann law 

go (3) 

N0 is the population of the ground state and g0 is the degeneracy or statistical weight of 
the ground state. 
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Equation (2) becomes 

I   _     Cl Su K?.       -Eu/kT ,^ 

where 
Ci = 

,K«. 

C Nc 

go 

Transcribing to logarithmic form, 
I Auf 0.434 Ku 

logl0"s7^r =logioCi —irr— <5> 
Introducing a value for k of 0.8624 x 10"* ev/deg, 

_ 5040E 

gA 

where T is in °K, gA = gu AUJ, and E is Eu in electron volts (ev). The value of T is most 
readily obtained from a plot of log IX/gA versus E as far as the relative gA for each 
spectral line is known. The slope of the line is — (5,040/T), and the value of C will not 
change the slope. As for the computer, since the logarithms normally have a base e, the 
slope is - (11,600/T). 

A typical Boltzmann plot by computer is shown in Fig. 9. The six solid points 
were used as standard lines. They correspond to the six lines underlined in Table II from 
which the absolute values of all lines in Table I were calculated. 

SECTION III 
RESULTS 

More than 90 percent of all the observed spectral lines were Aril. Occasional Arl 
and Arlll lines were seen, depending on arc current, magnetic field, mass flow rate, and 
field of view within the arc column. Molecular bands were orders of magnitude weaker 
than Aril, if they were seen at all. 

Operating conditions for the hollow cathode arc were pressures of 10"4 torr, 
magnetic fields of 580 to 1600 gauss, and temperatures of 2 to 8 ev (kTe) determined by 
radial inversion of the 1/2-in.-diameter flow field (Ref. 2). 

The MHD arc shown in Fig. 4 operated at pressures of 10'1 to 10"3 torr, Ar mass 
flow rates 0.05 to 0.15 gm/sec, electron densities of 1014 cm"3, and temperatures of 1 to 
2.5 ev (kTe). 

Steady-state operation was limited to currents less than 1400 amp at 10"1 torr, 
although runs of 20 sec duration were made at 2500 amp and 70 v. No temperature runs 
were made at these higher currents. 

10 
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< 

8.00 

6.40 

4.80 

*   3.20 

1.60 

0 

0 

Aril 
Temperature 12,400°K 

T = _ 11,600 
Slope 

o         ^s^ 

■    • Standard Lines 

"1
  
  
  
  
  

  
  

I 
  

  
  

  
  
  
 1

 

i              i              i 
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Fig. 9   Typical Boltzmann Plot Showing Six Points Used as Standard Lines 

According to the straight Boltzmann plots, both sources exhibited local 
thermodynamic equilibrium wherever these measurements were taken. Two spectral lines, 
4579 and 4589 A, were observed with and without a reflecting mirror behind the arc as a 
test for self-absorption. Both lines showed less than five percent reduction in energy 
according to calculated intensity. Line profiles were observed with the 1.5-m spectrograph 
with a reduced slit to minimize instrumental broadening; asymmetric or abnormally 
broadened lines were not used in this project. 
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